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Because computer science af€ects every other scientific discipline, the editors of Amtiean 
Scientist felt it appropriate that  a journal that spans the disciplines should have a regular 
column examining this field and its pervasive influence. They invited me to  write such a column. 
I undertook this t a s k  beginning with the issue of January 1985. This report collects the texts of 
the six columns for 1985 into a single place. 

The column focuses on fundamental issues in computer science that are likely to be of 
interest t o  scientists in other disciplines. Article No. 1 introduced computer science by pointing 
out the principal areas of the discipline and their fundamental questions. Articles Nos. 2 and 3 
dealt with computer network, a subject of increasing interest in the scientific community this 
year because of the NSFNET project. Articles Nos. 4 and 3 dealt with parallel computation, a 
subject of great h e r a t  among scientists who rely on massive computations. Article No. 6 dis- 
cussed the arbiter problem, a basic limitation on the ability of physical circuits to select between 
two near-simultaneous events within a bounded time interval; this problem interested me because 
it is fundamental, physical, and not deeply mathematical. 

I am indebted to American Scientirteditor Michelle Press for her enthusiastic support and 
encouragement. 

Work reported herein was supported in part by Contract NAS2-11530 from the 
National Aeronautics and Space Administration (NASA) to the 

Universities Space Research Association (USRA). 
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What is Computer Science? 

A metican Scientist 73 
No. 1 (Jan-Feb 1985) 

The discipline of Computer Science ha8 deep rootr in mathemt icr ,  engincerkq, and 
logic. The core ofthe field can be rubdivided into eleven areaa, which addrerr fundamen- 
tal quutionr and have major aecomplirhmenk. Becauie the fundamental question under- 
lying all of computer science -- “ What can be automated?” -- will not soon be amwered, 
the  discipline d l  endure. 

Computer Science is the body of knowledge dealing with the design, 
analysis, implementation, effkiency, and application of processes that transform 
information. The fundamental question underlying all of computer science is, 
“What can be automated?” (1) This discipline was born in the mid-1940s with 
the invention of the stored-program electronic computer and has grown rapidly 
ever since. 

Computer science has deep roots in mathematics, engineering, and logic. 
For several thousand years, a principal concern of mathematics has been calcula- 
tion. Many models of physical phenomena have been used to derive equations 
whose solutions yield predictions of those phenomena - for example, calculations 
of orbital trajectories, weather forecasts, and fluid flows. Many general methods 
for solving such equations have been devised - for example, algorithms for sys- 
tems of linear equations, differential equations, and integrating functions. For 
almost the same period, a principal concern of engineering has been calculations 
that aid in the design of mechanical systems. Examples include algorithms for 
evaluating stresses in static objects, calculating momenta of moving objects, and 
measuring distances much larger or smaller than our immediate perception. 

has been mechanical aids for calculating. Some surveyors’ and navigators’ 
instruments date back a thousand years. Pascal and Leibniz built arithmetic 
calculators in the middle 1600s. In the 18309, Babbage conceived of an “analyti- 
cal engine” that could mechanically and without error evaluate logarithms, tri- 
gonometric functions, and other general arithmetic functions. His machine, 
never completed, served as an inspiration for later work. In the 1920s, Bush con- 
structed an electronic analog computer for solving general systems of differential 

One product of the long interaction between engineering and mathematics 
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equations. By the 1920s electromechanical calculating machines capable of addi- 
tion, subtraction, multiplication, division, and square root were available. The 
electronic flip-flop provided a natural bridge from these machines to digital ver- 
sions with no moving parts. 

Logic is also an old discipline, concerned with criteria of validity of inference 
and formal principles of reasoning. Since the days of Euclid, it has been a tool 
for rigorous mathematical and scientific argument. By 1830, it was obvious that 
all the known deductive systems were incomplete because paradoxes could 
always be found. This led to a century-long search for a “complete” deductive 
system - within which it would be possible to determine mechanically whether or 
not any give statement is either true or false, In 1931, Godel published his 
“incompleteness theorem” showing that there is no such system. In the late 
1930s, Turing discovered a similar result, that there are problems that cannot be 
solved by any mechanical procedure. The importance of logic was not only its 
deep insight into the limits of automatic calculation, but also its focusing on the 
possibility that strings of symbols, perhaps encoded as numbers, can be inter- 
preted both as data and as programs. 

This insight is the key idea that distinguishes the stored program computer 
from calculating machines. The steps of the algorithm are represented as binary 
codes and stored in the memory for later decoding and execution by the proces- 
sor. The binary code can be derived mechanically from a higher-level symbolic 
form, the programming language. 

It is the explicit, and intricate, intertwining of the ancient threads of calcu- 
lation and logical symbol manipulation that marks the birth of the discipline of 
computer science. 

in the 1980s. The box below traces this development, showing times at which 
new subfields made the transition from poorly understood sets of techniques to 
well understood sets of core principles. The dates shown in the box are, of 
course, approximate. They represent my estimates of when these areas were 
included in the required courses in a significant number of computer science 
departments. Artificial intelligence, which has been an active research area since 
the early days of computer science, is now making the transition from elective to 
required status at many universities. 

theoretical component; most have devised specialized programming languages as 
notation for algorithms and data structures; most implementations are on 
machines with operating systems connected to networks; most deal with prob- 
lems having components that can execute in parallel. Some subdisciplines, such 
as software engineering, embrace all eleven areas. 

The foIlowing paragraphs outline the principal content of the eleven areas, 
listing the fundamental questions and the major accomplishments of each. 

Computer science has grown from infancy in the 1940s to a broad discipline 

The eleven areas are by no means mutually exclusive. Each has its own 
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The Evolution of Computer Science 

Theory 
Numerical computation 
Architecture 
Programming languages & methodology 
Algorithms & data structures 
Operating systems 
Networks 
Human interface 
Database systems 
Concurrent computation 
Artificial intelligence 

1940 
1945 
1950 
1960 
1968 
1971 
1975 
1978 
1980 
1982 
1986 (?) 

THEORY. This area deals with the basic mathematics underlying compu- 
tation. The fundamental questions are: What problems can machines solve? 
What are optimal algorithms for givendasses of problems? What is the intrin- 
sic best and w o k  case performance of given classes of machines for given classes 
of problems? What problems are equivalent to each other in computational dif- 
ficulty? The major accomplishments are: 

1. 

2. 

3. 

4. 

Computability theory, which defines what machines can and cannot do. 
Branches include automata and formal language theory. 

Complexity theory, which tells how to measure the time and space require- 
ments of computable functions. This theory relates a problem’s size with 
the best- or worst-case performance of algorithms that solve that problem. 

Classification of problems into complexity classes, such as those solvable 
deterministically in polynomially-bounded time (P-problems) and those 
solvable nondeterministically in polynomially-bounded time (NP-problems) . 

Automatic theorem proving. 

NUMERJCAL COMPUTATION. This area deals with general 
methods of efficiently and accurately solving equations resulting from mathemat- 
ical models of systems. The fundamental questions are: How can we accurately 
approximate continuous or i ~ i n i t e  processes by finite discrete processes? How 
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do we cope with the errors arising from these approximations? How rapidly can 
a given class of equations be solved for a given level of accuracy? How can sym- 
bolic manipulations on equations, such as integration, differentiation, or reduc- 
tion to minimal terms, be carried out? How can the answers to these questions 
be incorporated into effcient, reliable, high-quality mathematical software pack- 
ages? The major accomplishments are: 

1. Theories of stability of methods and error propagation resulting from finite 
and discrete representations - in particular, backward error analysis. 

2. Fast algorithms for certain problems such as the fast Fourier transform and 
solution of Poisson’s equation. Extensive assessment of algorithms for accu- 
racy and efficiency. 

3. The finite element model for a large class of problems specifiable by regular 
meshes and boundary values. Associated iterative methods and convergence 
theory. Automatic grid refinement during numerical integration. 

4.  Mathematical software packages for handling general problems involving 
matrices, ordinary differential equations, and statistics; and less general 
problems involving partial differential equations, optimizations, and non- 
linear equations. 

5 .  Symbolic manipulators capable of powerful and nonobvious reductions, dif- 
ferentiations, and integrations of expressions. 

ARCHITECTURE. This area deals with methods of organizing many 
hardware and software components into effcient, reliable systems. The funda- 
mental questions are: What are best methods of implementing processing, 
memory, and communication functions in a machine? How do we build large 
computational systems in such a way that we can convincingly demonstrate that 
they work as intended despite various types of errors and failures? The major 
accomplishments are: 

1. Finite state machine theory and Boolean circuit algebra, which relate 
hardware function to structure. 

2. The so-called von Neumann machine, which is the single-instruction 
sequence stored program computer. 

3. Hardware units for fast arithmetic. 

4. Efficient methods of encoding and storing information in various media. 

5 .  Theory of reliable computing systems, including redundant components, 
reconfiguration, diagnostics, and testing. 
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6. Methods of synthesizing large complex systems from basic components. 

7. Prototypes of multiprocessor machines capable of supporting hundreds or 
thousands of simultaneously executing processors. 

8. Microelectronic circuit technology and computer aided design of very large 
scale integrated (VLSI) circuits. 

PROGRAMMING LANGUAGES AND METHODOLOGY. This 
area deals with notations for expressing algorithms and data, with efficient 
translations from high level languages into machine codes, and with methods of 
efficiently constructing correct programs. The fundamental questions are: What 
are the basic data types and operations that arise in various classes of problems 
and how should they be represented? What are the basic methods of controlling 
the execution of a computation? How can syntactic descriptions of language be 
used to cohstruct efficient compilers and optimal code generators? What 
methods should be used to aid in the process of proving that a program performs 
its intended function? The major accomplishments are: 

1. Procedure-oriented programming languages such as Cobol, Fortran, Algol, 
Pascal, or Ada. Functional languages such as APL, Lisp, Prolog, and VAL. 
Object-manipulating languages such as Smalltalk or CLU. 

2. Codifiiation of basic concepts of programming languages such as basic data 
types (e.g., scalars, arrays, records, strings) and control structures (e.g., 
sequencing, iteration, selection, subroutines, recursion). 

3. Theory of compiling and code generation and its application in real com- 
pilers. 

4. Verification, which deals with establishing that a program’s functional 
speciflcations are satisfied by its implementation. 

5.  Syntaxdirected editors that monitor program construction and alert the 
user to potential errors. 

ALGORITHMS & DATA STRUCTURES. This area deals with 
speciflc classes of problems and their efficient solutions. The fundamental ques- 
tions are: For given classes of problems, what are the best algorithms? How 
much storage and time do they require? What is the tradeoff between space and 
time? What is the worst case of the best algorithms? How well do algorithms 
behave on average? How general are algorithms - i.e., what classes of problems 
can be dealt with by similar methods? The major accomplishments are: 
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1. Identification of good and bad algorithms for important classes of problems 
spch as searching, sorting, random-number generation, and textual pattern 
matching. 

2. Identification of general methods applicable across many classes of prob- 
lems, such as storage of information in tables or lists, graph algorithms, or 
tree algorithms. 

3. Categorizing the effects of data structure on time and space requirements of 
programs for various classes of problems. 

OPERATING SYSTEMS. This area deals with the control mechanisms 
that allow multiple resources to be efficiently coordinated in the execution of 
programs. The fundamental questions are: At each time scale in the operation 
of a computer system, what are the visible objects and permissible operations on 
them? For each class of resource (objects visible at some level), what is a 
minimal set of operations that permit their effective use? How can interfaces be 
organized so that users deal only with abstract versions of resources and not 
with physical details of hardware? What are effective control strategies for job 
scheduling, memory management, communications, access to software resources, 
communication among concurrent tasks, reliability, security, and the like? What 
are the principles by which systems can be extended in function by repeated 
application of a small number of construction rules?. The major accomplish- 
ments are: 

1. 

2. 

3. 

4. 

5.  

6. 

Prototypes of timesharing systems, interrupt systems, automatic storage 
allocation, schedulers, and file systems that served as the bases of major 
commercial systems. Libraries of utilities such as text editors, document 
formatters, compilers, linkers, and device drivers. 

Powerful, hierarchical abstraction principles that permit users to operate on 
idealized versions of resources without concern for physical detail - for 
example, processes instead of processors, files instead of disks, data streams 
instead of program input/output. 

Theories of process management including reliable interprocess synchroniza- 
tion, communication, and deadlock control. 

Theories of memory management including optimal swapping policies for 
virtual memory, file access methods, and secondary storage optimization. 

Hierarchies of directories. 

Theories of job scheduling, queueing network modeling, and other forms of 
performance mode!ing . 
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7.  Models of access control for files owned by specific users. 

8. High level command interfaces that permit users to easily express computa- 
tions consisting of several components selected from among the files in a 
system. This includes interactive “windows,” command “menus,” and 
pointers such as the “mouse”. 

NETWORKS. This area deals with the organization of systems compris- 
ing interconnected computers. The fundamental questions are: What are the 
most efficient methods of error checking and correction? Of reliably exchanging 
information across various media (e.g., telephone lines, microwaves, laser 
optics)? Of mediating contention for shared channels? What strategies (proto- 
cols) should be used for connecting computers across long distances? Short dis- 
tances? How can the fact that a system is made of components connected by 
networks b4 hidden from users who do not wish to see that level of detail? The 
major accomplishments are: 

1. 

2. 

3. 

1. 

5.  

6. 

Prototyes for long-haul, computer-to-computer communication networks 
that served as the bases for commercial networks. 

Local networks for high speed connections among close computers, such as 
Ethernet, Pronet, or token-ring nets. 

Protocols that allow computers to establish and maintain connections 
across unreliable networks. 

Protocols that mediate high-speed contention on shared -or broadcast chan- 
nels. 

Cryptographic protocols that permit secure authentication and secret com- 
munication. 

Structural principles for operating systems that allow hiding of the network 
from those who do not wish to see it. 

HUMAN INTERFACE. This area deals with the transfer of information 
between humans and machines via various human senses and motor skills. The 
fundamental questions are: What are efficient methods of representing objects 
and automatically creating pictures for viewing? What are efficient methods for 
receiving input or presenting output? How can the risk of misperception and 
subsequent human error be minimized? The major accomplishments are: 

1. Core graphics systems for representing objects, for displaying them effi- 
ciently, and for creating displays that rotate, translate, pan, and zoom in 
real time. This includes a wide range of algorithms for constructing 
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pictures from basic components, smoothing, shading, and removing hidden 
lines. 

2. Interactive methods for computer aided design. 

3. Advanced forms of input and output such as optical readers, light pens, 
touch sensitive pads, and the “mouse” pointer. , 

4. Psychological studies leading to modes of interaction that reduce human 
error and increase human efficiency. 

DATABASE SYSTEMS. This area deals with the organization of large 
sets of data for efficient queries. The fundamental questions are: What basic 
models should be used to represent data elements and relations among them? 
What operations are used to store, locate, retrieve, and match data? How can 
these operations most efficiently be expressed in language forms? How can 
high-level descriptions of queries be translated into efficient codes for sifting 
through the database? What machine architectures lead to the fastest 
retrievals? How can the data be protected against unauthorized access, disclo- 
sure, or destruction? How can large databases be protected from inconsistencies 
generated by simultaneous access, especially when the data is distributed among 
many machines? The major accomplishments are: 

1. Major models for representing large data sets and relations among the data 
elements, including the relational, hierarchical, and network models. Special 
representations of files for fast retrieval, such as inverted trees and associa- 
tive stores. 

2. Design principles for locking records when they can be simultaneously 
accessed by many users. 

3. Design principles for maintaining consistency among multiple copies of data 
stored on different machines of a network. 

4. Principles for preventing unauthorized disclosure or alteration of informa- 
tion in the database, including protection against statistical inference in 
real-time query systems. . 

5 .  High performance database machines. 

CONCURRENT COMPUTATION. This area deals with the organiza- 
tion of computations that require many processing elements working con- 
currently. The fundamental questions are: What are the basic models of con- 
current computation? What classes of problems are most effectively served by 
each model? What types of machines are most suited for efficient 
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implementation of programs in each model? What high level visual tools should 
be provided so that massively parallel computations can be expressed quickly 
and correctly? How can the large numbers of resources required in such compu- 
tations be efficiently managed? The major accomplishments are: 

1. 

2. 

3. 

General models for parallel computation such as tree machines, mesh array 
machines, dataflow machines, and coplmunicating sequential processes; new 
programming languages for these machines. 

Development of parallel algorithms for important problem classes on these 
machines; methods of partitioning problems into parts that can be executed 
concurrently; division of parallel algorithms into time and space complexity 
classes. 

Interactive aids for programming and debugging parallel computations. 

ARTIFICIAL INTELLIGENCE. This area deals with the simulation of 
intelligence. The fundamental questions are: What is intelligence? What basic 
models of intelligence are there and how do we build machines that simulate 
them? To what extent is intelligence described by rule evaluation and what is 
the ultimate performance of machines that simulate intelligence by evaluating 
rules? To what extent is intelligence unpredictable and can this be modeled by 
randomness in the machine? The major accomplishments are: 

1. 

2. 

3. 

4. 

5.  

Theories of cognition and thought expressed in terms that could be realized 
by computer. 

Efficient methods of knowledge representation and searching through 
knowledge bases. 

Powerful software systems for logic programming, theorem proving, and 
rule evaluation. 

Special applications such as robotics, image processing, vision, and speech 
recognition. 

Expert systems based on rule evaluation for simulating expert human 
behavior in a few nazrow domains. 
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Computer science includes in one discipline its own theory, experimental 
method, and engineering. This contrasts with most physical sciences, which are 
separate from the engineering disciplines that apply their findings - as for exam- 
ple, in chemistry and chemical engineering. I do not think the science and the 
engineering can be separated .within computer science because of the fundamen- 
tal emphasis on efficiency. But I do believe that the discipline will endure 
because the fundamental question - “What can be automated?” - will not soon 
be answered. 

Reference 

1. Readers interested in a detailed treatment of the subjects covered here are invited to exam- 
ine the report of the NSF Computer science and Engineering Research Study (COSERS), 
What Can be Automated?, ed. B. Arden, 1980, MIT Press. 
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Computer Networks 

American Scientist 75 
No. 2 (Mar-Apr 1985) 

Computer network soffware u organized into a series of layerr that succesr idy  hide 
more and more of the  detail of signal tranrmi.rion over single links, signal 
trarumirsion over multiple-link pathr, error and congestion control, reliable 
computer-computer connections, and filtering data as it moves between user pro- 
gram and the network. 

In mid 1984, the National Science Foundation (NSF) formed the Mice of 
Advanced Scientifrc Computation to establish national supercomputer centers 
and make them accessible to the entire scientific community through a network 
to be called Sciencenet. This project has drawn scientists from many discipliies 
into potentially bewildering discussions about computer networks. In this 
column I will discuss the basic principles of networks. For further reading that 
will introduce you to this fascinating subject, I suggest the materials by Tanen- 
b‘aum at the end of the article. 

A computer network is a collection of computers, called “hosts”, that can 
communicate with one another. A host can be a large supercomputer, a time- 
shared minicomputer, or a personal workstation. Ordinary terminals are not 
considered hosts. 

There are two types of network, Iocal and long-haul. A local network is 
used to connect computers in the same building or in neighboring buildings. It is 
built of special cables and interfaces that achieve high speed by taking advantage 
of the low error rates possible over short distances. Local networks capable of 
transmission rates of 50 megabits per second (Mbps) are available commercially. 
A long-haul network is used to connect computers over long distances. It is typi- 
cally built from telephone or satellite l i s .  The transmission rates are much 
lower, ranging from 1.5 Mbps on satellite links, to 56 kilobits per second (Kbps 
or “kilobaud”) with the best special-purpose modems over leased telephone lines, 
to 9.6 Kbps with the best modems over dial-up l ies ,  to 1.2 Kbps with inexpen- 
sive modems over dial-up lies. Whereas local networks are normally operated 
by the same organization who own the computers, long-haul networks are nor- 
mally operated by outside organizations, the common carriers. 
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Two modes of data communication are generally used, broadcast and 
packet-switched. In broadcast mode, the entire network is treated as a single 
channel shared by all the hosts; the bandwidth can be very high but interference 
(called “collisions”) can be a problem if each host has a high need for the net- 
work. The broadcast mode is common in local networks. (Some satellite links 
also operate in broadcast mode.) In packet-switched mode, the incoming data 
stream is broken into chunks, which are stored in packets that also contain the 
address of the destination host; the network relays the packets through a series 
of switch computers, often called IMPS (for Interface Message Processors), en 
route to their destinations. This mode is used to efficiently share many 
computer-computer conversations over common links. The packet-switched 
mode, also called store-and-forward mode, is common in long-haul networks. 

While the concept of connecting computers together has .long fascinated the 
writers of science fiction, the first long-haul computer network became reality in 
the early 1970s. This was the ARPANET, built under contract to the Defense 
Advanced Research Projects Agency (DARPA) . The ARPANET continues to 
provide high-grade service today, but its access is limited to hosts under contract 
to the Department of Defense, which includes about twenty universities, and the 
cost is high ($130K per IMP in 1984). Many spin-offs of the ARPANET tech- 
nology now exist, such as the NSF-initiated computer science research net 
(CSNET) and commercial networks such as GTE Telenet, Unidata, and Com- 
puServe. Local networks began to appear in the middle 1970s, with such notable 
examples as EthernetTM of the Xerox Corporation and the University of Cam- 
bridge Ring. Local networks are now a major commercial enterprise. 

Why connect computers? One reason is to enable the use of remote 
resources - for example, remote job entry to a supercomputer, remote use of a 
powerful graphics facility, or remote use of a chip fabrication facility. A second 
reason is to enable sharing of programs and data - for example, one institution 
can m‘ake its special codes and data libraries available to the rest of the com- 
munity and thereby space other institutions needless duplication of effort. A 
third reason is to encourage coIlaboration among the users of the network. The 
experience of the ARPANET, which is being reconfirmed in CSNET and other 
networks, is that collaboration, often envisioned as the least of the three reasons, 
is in fact the most important. The ability of a network to knit together the 
members of a sprawling community has proved to be the most powerful way of 
fostering scientific advancement yet discovered. 

How are networks built? Despite a wide variety of implementations and a 
massive amount of technical detail, a set of design principles has emerged. These 
principles have been captured in a model called Open Systems Interconnections 
promulgated by the International Standards Organization in 1980. The model 
organizes the functions of a network into a hierarchy according to their charac- 
teristic time scales and levels of abstraction. Each layer builds on, and adds 
functions to, the layers below. Layers from, highest to lowest, are: 
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7 Applications 

6 Presentation 

5 Session 

4 Transport 

3 Network 

2 D a t a L i n k -  

1 Physical 

User programs such as file transfer, 

Filter user data as it moves 

Transmit information reliably between a 

Transmit informat ion reliably over 

Find and control multi-IMP routes 

Transmit data reliably in packets 

Transmit electrical signals over 

remote job entry, and electronic mail 

between applications programs and the network 

process on one host and a process on another 

a data path from one host to another 

From one host to another 

over a single data link 

a cable or other channel 

I will discuss these layers in the sections following, beginning with Layer 1 and 
working up. 

The software (and hardware) implementing these layers must be present in 
each host of the network. The software is designed so that Layer i on one host 
can interact with Layer i on another host as if the lower layers did not exist. 
To -mplement this, the data being transmitted from Layer i on one host are 
passed down through the software at Layers i -l,...,l, being transformed by 
each as they pass through. 
the destination host, which passes them up through the software at Layers 
19...,i -1 where they reappear at Layer i . 

The algorithms implemented by the various software layers are called net- 
work protocols. Network protocols are sometimes part of the operating system. 
Since an IMP is merely a relay computer, the protocol software contained in it 
need only span Layers 1, 2, and 3. Protocol software tends to have arcane acro- 
nyms left over from the deliberations of the standards committees. One of the 
physical layer protocols approved is designated “X.21”. One of the protocols for 
Layers 1-3 is designated “X.25”. The software for the ARPANET covers layers 
1-5 and is designated “TCP/IP” (for transport control protocol and internet 
protocol). Although these protocols span the same layers in the model, they 
may be incompatible; for example, the strategy used in X.25 for layers 1-3 is dif- 
ferent from the strategy used in TCP/IP for the same layers. 

The data are transmitted to the physical layer of 

THE PHYSICAL LAYER. This is the hardware level at which the 
actual transmission of a raw bit stream from one station to another takes place. 
All electrical and mechanical aspects of data communication are handled at this 
level. The designers must answer such questions as how to represent bits (0 or 
1) as signals, whether half duplex (unidirectional communication) or full duplex 
(bidirectional communication) will be used, what the pin configurations on the 
connectors will be, and what type of network the host will be part of. 
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Most physical networks employ analog signalling. Thus, a modem is needed 
to convert between the computer’s digital data and the telephone line’s voice 
bands. The internationat organization for standards in telephony has proposed 
an all digital protocol, X.21, for connecting a digital host to a digital physical 
network. 

Local networks present interesting challenges at the physical layer. These 
networks are typically operated in broadcast mode. Each host listens continu- 
ously and receives data by picking out messages whose headers are addressed to 
it. Special control schemes select which of several contending hosts will actually 
get to use the network - simultaneous transmissions wil€ jam one another. 

In an EthernetTM, for example, hosts are attached to a single coaxial cable. 
To send data, a host waits until no signal is present on the cable, then begins 
transmitting. If it discovers that it is being jammed (“collided with”) by 
another host, i t  stops, waits a random amount of time, then retries. This stra- 
tegy is embodied as a protocol called Carrier Sense Multiple Access with Colli- 
sion Detection (CSMA/CD). In a “token ring’’ local network, the hosts are con- 
nected in a circle. A special signal pattern, called the control token, is passed 
around the ring until it comes to a host having data to transmit. The host 
seizes the token and transmits the data; when done, it transmits the control 
token. Ethernets capable of 10 Mpbs and token rings capable of SO Mbps are 
commercially available. 

The user of Layer 1 can be sure that a given string of bits will be encoded 
and transmitted, but cannot be sure the data have passed successfully over the 
data link. Errors are detected and fixed by the next higher level. 

THE DATA LINK LAYER. This level provides reliable physical links 
between adjacent hosts or IMPS. The basic strategy is to divide the data into 
chunks, called frames, and then to embed each frame in a packet for transmis- 
sion. A packet contains additional information such as destination address, a 
sequence number, and redundant bits called a checksum for detecting errors. 
Packets are typically in the range from 10 to 1000 bytes long. (A byte is an 8- 
bit code for a character.) The sending host’s data link layer transmits the pack- 
ets in sequence and waits for acknowledgements from the receiving host; it 
retransmits packets for which acknowledgements are not received within a time 
limit. The receiving host’s data link layer attempts to collect a complete 
sequence of correct packets in its buffer. A packet is correct if the checksum in 
the packet matches a checksum computed for the remaining information in the 
packet. 

accept packets as fast as the sender can transmit them. For this reason, data 
link protocols include a mechanism, called flow control, whereby the sender is 
shut off whenever the number of unacknowledged packets exceeds a limit. A 
standard protocol embodying these ideas is called High Level.Data Link Control 

Because of the finite size of its buffers, the receiving host may not be able to 
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(HDLC). 
The user of the data link layer can be sure that a given string of bits will be 

transmitted and acknowledged correctly over a given link, but cannot send infor- 
mation over paths comprising multiple links. Multiple-link paths are set up and 
managed by the next higher level. 

THE NETWORK LAYER. This level provides multilink paths from 
host to host using one or more IMPs as relays along the way. The basic strategy 
is to place a “routing table” in each IMP that tells what link to use when for- 
warding a packet addressed to a given host. A packet received by the data link 
layer on an IMP is passed up to the network layer, which then determines which 
outgoing link to use and generates a new transmit request on the data link layer. 
Routing tables can be dynamically updated so that packets are sent out along 
links with the least congestion; the information about queue lengths within an 
IMP can be sent periodically to neighboring IMPs in special control packets. 
Two basic strategies for the network layer protocol are in use, virtual circuits 
and datagrams. 

A virtual circuit is a predetermined path (series of links and IMPs) over 
which all packets in a conversation between a given pair of hosts flow. It is esta- 
blished when the caller sends a special “call request” packet to the receiver. The 
path traced by the call request packet is remembered in the IMP routing tables 
along the way. The receiving host returns a “call acknowledge” packet. Both 
hosts embed a virtual circuit number in each data packet so that those packets 
can efficiently trace the same-path and can be efficiently acknowledged. The 
term virtual circuit s-uggests the simulation of a telephone circuit set up through. 
a series of relays when a call is made. The advantage of virtual circuits is that 
the exchange of data packets can be very efficient once the circuit is open 
because virtual circuit number fields in packets are short and the required buffer 
space in the IMPS along the way has been reserved in advance; the disadvantage 
is that a lot of IMP memory can be wasted remembering virtual circuits over 
which there is little trflic. The international body for standards in telephony 
has established a protocol called X.25 embodying these ideas. Networks based 
on the X.25 protocol are common in Europe and are provided by some carriers in 
the U.S., notably GTE Telenet, Unidata, and CompuServe. 

A datagram is a packet sent independently of all other packets, past or 
future, belonging to the same conversation. It must contain the full address of 
the recipient. Any message that can be completely embedded in a single packet 
is much cheaper to send in a datagram than in a virtual circuit network. The 
advantage of datagrams is simplicity in the Layer 3 protocol; the disadvantage is 
that the software above Layer 3 has a greater responsibility to check that all 
components of a message have been received and properly acknowledged. A 
datagram oriented protocol, called Internet Protocol (IP), is used in the 
ARPANET. 
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The user of the network layer can be sure that packets that must traverse 
multiple links can be guided to their destinations, but cannot be sure they all 
arrive in order or intact. With datagrams, for example, packets can arrive out 
of order because they followed different paths through the’IMPs. With virtual 
circuits, the failure of an IMP can break the circuit and lose packets buffered in 
that IMP. The next level up overcomes these difficulties. 

THE TRANSPORT LAYER. This layer provides reliable multilink 
paths between pairs of hosts. The software includes tests to verify that circuits 
remain open or datagrams are eventually acknowledged. The interface contains 
these commands: 

con-id = OPEN(localport, remoteport) 
con-id = LISTEN( ) 
CLOSE (con-id) 
SEND(con-id, address, length) 
RECErVE(con-id, address, length) 

The OPEN command attempts to establish a connection between a local port on 
the calling host and a given remote port on the called host and returns a connec- 
tion number if successful. The LISTEN command waits for an incoming call 
(generated by an OPEN command on another host) and returns a connection 
identification number. The CLOSE command breaks the connection. The 
SEND command sends a series of bytes of given length over an open connection; 
the beginning of the series is at the given memory address. The RECEIVE com- 
mand waits until the connection contains the requested length byte-sequence, 
then stores it at the given address. 

The ARPANET uses network software called Transport Control Protocol 
(TCP) and offers datagram service over leased telephone lines fitted with 
56Kbps modems. (Overhead, from congestion in the IMPs and from transmit- 
ting identifying information along with the messages, causes the effective average 
file transfer rate to be much lower, typically under 20 Kbps.) Each IMP is con- 
nected to at least two other IMPs so that the failure of one IMP or telephone 
line will not isolate any part of the network. The underlying protocol for deliver- 
ing datagrams that may possibly be addressed to networks other than the 
ARPANET is called Internet Protocol (IP). The combination is referred to as 
TCP /IP . 

The user of the Transport Layer can be sure that messages will be reliably 
delivered to remote hosts irrespective of the state of the network, number of 
links on the path, datagram or virtual-circuit service, or number of operational 
IMPS. Moreover, the details of the network technology are completely hidden in 
the sense that the same interface can be used with networks ranging in speed 
from telephone lines to satellite links. Connections between user processes 
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(running programs) and ports on a host are managed by the next level. 

THE SESSION LAYER. This layer establishes and manages reliable 
connections between pairs of processes (running programs) on different hosts. It 
is a minor extension of the transport layer and performs such additional useful 
functions as allowing symbolic names (Le., character strings rather than 
numbers) to be used in the calls on the OPEN, CLOSE, SEND-, and RECEIVE 
commands, or matchipg responses from remote processes with multiple outstand- 
ing requests to those processes. In most systems today there is little distinction 
between the Transport and Session Layers and there is some question whether 
the model should maintain such a distinction. 

THE PRESENTATION LAYER. This layer filters (transforms) data 
in certain useful ways as it moves between user programs and the network. 
Some of functions are: 
1. Encryption Protocol. The contents of messages are encrypted on transmis- 

sion and decrypted on receipt. The distribution of keys is the most chal- 
lenging aspect of network encryption. 
Text Compression Protocol. A considerable amount of redundancy exists in 
text data. Simple text compression algorithms reduce text files by 50% 
before transmission. This can signficantly increase the effective bandwidth 
of the network. 
Virtual Terminal Protocol. This software allows users to write applications 
programs that will work correctly with any terminal connected across the 
network to the program. The idea is to define a hypothetical terminal ttnd 
require programmers to deal only with it. The protocol software converts 
between the commands of the actual terminal and the corresponding com- 
mands on the virtual terminal. 

2. 

3. 

THE APPLICATIONS LAYER. This is a catch-all layer in which 
reside all the user programs that may require an interaction with the network. 
The most prominent examples -are electronic mail programs, remote job entry 
programs, and file transfei programs. 

As more networks are built, the interest in connecting them together 
increases. A computer connecting two networks is called an internet gateway. 
Gateway computers must know about the protocols used on both networks and 
must convert packets from one format to the other. Sometimes the gateways 
must enforce access controls, rules that constrain which connections are allow- 
able. &cause the Open Systems Interconnection model does not discuss gate- 
ways, I have not attempted to fit them into the hierarchy in this discussion. 
They are nonetheless important in the supernetworks that will be built in the 
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future. 
‘ 

Most of this structure is hidden from users who do not wish to see it. Very little 
has been said about how networks appear to their users. That will be the sub- 
ject of the next column. 

The above description has focused on the internal structure of networks. 
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Supernetworks 

A metican Scientist 73 
No. 3 (May-Jun 1985) 

Supernetwork such a i  Sciencenet d l  be formed by connecting many different network 
with gatmagi. The reiulting network mwt appear to be a coherent system providing 
acceii to a wide range of Community rcIourecs through a common user interface. 

In the March-April issue, I discussed the internal structure of computer net- 
works, emphasizing how the protocol software can be built as a series of layers. 
Most of this structure is hidden from the users of the network. What should the 
users see? 

Preliminary answers can be given in the context of the Advanced Scientific 
Computing Initiative, the new project of The Xational Science Foundation 
(NSF) to make national supercomputer centers accessible to the entire scientifc 
community. This project includes a network which I referred to as Sciencenet in 
the pevious column. It turns out that a private company is using the name 
Sciencenet, and so a new name must be found. Not knowing what the name will 
be, I will coin the term “NSF-net” for the remainder of this column. NSF-net 
will be a network of networks connected by gateways, a sprawling, complex, 
heterogeneous system. Yet it must provide simple, uniform access to community 
resources. Properly designed, such a system would be a powerful tool for science 
- a “supernetwork.” 

NSF has stated that one of the most important goals of its Advanced Scien- 
tific Computing Initiative is to promote cooperation and sharing of advanced 
computational resources among all members of the scientific and engineering 
community. NSF-net is charged with developing or promulgating standard tran- 
sport, gateway, and application-level protocols toward this goal. What might 
this supernetwork do for you as a user? A well-designed NSF-net could: 

1. Allow you to  interact regularly with research colleagues around the world 
without having to know exactly where they are or what kinds of computers 
they use. 
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2. 

3. 

4. 

5 .  

Allow any program, database, service, or facility in the network to be 
registered as a network-wide resource. (In particular, allow you as an indi- 
vidual to share any resources you create with the entire scientific commun- 
ity.) 

Allow you to quickly find the names of registered resources when all you 
know is their general function. And then allow access to these resources 
without knowing exactly where they are or what computers they use. 
Allow access to resources by the same interface irrespective of whether they 
are local or remote. 
Allow you to construct programs that not only can use resources around the 
network but will not malfunction if those resources are moved. 

Five principles that can jointly yield such a design are described in the sections 
below. 

PEOPLE-ORIENTATION. The network’s administration should 
actively encourage interaction among scientists. This is so for at least two rea- 
sons. First, collaboration and sharing are the most powerful methods known for 
advancing scientific knowledge. Second, building on existing resources is far 
more productive than creating one’s own versions. People-orientation has many 
implications for the design of network software at all levels. For example: 

1. 

2. 

3. 

4. 

5 .  

,4 meaningful set of external names for resources is essential in addition to 
internal addresses that are easily processed by software and hardware. 
Because names for resources will be embedded in programs, files, and direc- 
tories, names must be location independent. Then, if the physical location 
of a resource changes, none of the programs, files, or directories that refer to 
it need be edited or recompiled in order to continue working correctly. 
The network must provide a variety of interactive “help servers,” which are 
advanced database systems that can respond to natural-language queries 
about network resources. Help servers will enable users to find and use 
existing resources rather than building new versions. 
The primary mechanism of interaction among users will be electronic mail, 
which may eventually include voice and video components. 
A good administrative structure is important to answer user questions, help 
new institutions come on line, support mailing lists, manage bulletin boards, 
develop new services, set standards, negotiate rates with public carriers, 
repair faulty software, obtain community input on network policies and 
operations, conduct measurements, and undertake experiments for improve- 
ments. 

. 
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RESOURCE GENERALITY. The network should place no prior con- 
straints on what programs, data, systems, or facilities can become network 
resources. 

The first resources on NSF-net will be supercomputer centers. This is 
because NSF’s first priority is to provide advanced computational power to the 
scientific community. In time, however, the community will begin to accumulate 
new knowledge from results obtained by advanced computation. The new 
knowledge should become accessible and usable by the community. This can be 
accomplished by allowing (and encouraging) users to develop new computational 
resources and attach them to the network. Examples include: 

Program libraries 

Data  Libraries 

Services 

Facilities 

Software, for instance, for image processing, sta- 
tistical analyses, or graphics support. 

Raw or condensed da ta  from experiments or sa- 
tellite instruments, partially processed images, 
catalogs of new astronomical objects, or cata- 
logs of chemical compounds. 

Software distribution services, information ser- 
vices tha t  aid in locating people or da t a  of spe- 
cial kinds (help servers), and directories of users 
or  other services. 

For example, a center offering special processing 
and expertise in a discipline (e.g., NASA Ames’s 
Numerical Aerodynamic Simulator), a real-time 
satellite da ta  collector, a t-D graphics proces- 
sor, or an astronomical laboratory delivering 
real-time data. 

LOCATION INDEPENDENT NAMING. The network should pro- 
vide uniform access to its resources without requiring users to know the physical 
locations of resources or other users. Location independence, also called ‘‘loca- 
tion transparency” in the jargon, is the property that external names - the char- 
acter strings that are meaningful to users - are interpretable by the network no 
matter what the physical addresses of the objects or persons denoted. This prin- 
ciple is enforced partly by network administration and partly by designing 
software to distinguish name from address. Users of networks with this property 
can be assured that commands and programs will continue to work even if files 
or users should move. 

databases record the correspondences between external names and internal 
addresses. Nameservers containing directories of users are maintained at the 

Network nameservers play prominent roles in location independence. These 
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network administrative centers of both ARPANET and CSNET. Future 
nameservers should be more powerful - advanced database systems that can be 
queried by keywords as well as resource names. These “help servers” will allow 
users to locate objects, knowing only their functions. 

The problems arising when the network forces users to deal with addresses 
directly can be serious. Consider a scenario. A Stanford scientist constructs a 
program to read and interpret DNA sequences stored in a database called DNA- 
Traces. This program is called DNA-Reader and is widely distributed in the 
scientific community. Under the current ARPANET addressing conventions the 
database receives the network name DNA-TracesQStanford (read as “DNA- 
Traces at Stanford”) and the program DNA-ReaderQStanford. The DNA- 
Reader program contains the string “DNA-Traces@Stanford” at the point where 
it interrogates the database. A user anywhere in the network can obtain a copy 
of DNA-Reader from Stanford. When any copy of DNA-Reader is run, it can 
use this string to address the database. 

Eventually Stanford creates the DNA Institute and moves the database to 
the new locat ion, thereby effectively renaming it D N A-Traces Q D N A-Inst itute. 
Suddenly hundreds of copies of DNA-Reader stop working because the address 
“DNA-Traces@Stanford” implanted in them is invalid. (Few users would under- 
stand the failure; fewer still would be able to fur the program.) Before new copies 
of DNA-Reader can be distributed, a student named Donald N. Aldoon at Stan- 
ford installs a personal file containing event traces from a simulated disk storage 
system - naming it DNA-Traces. Suddenly all those DNA-Reader programs 
seemed to work again .... 

addresses. First, all copies of software (or databases) referring to a resource will 
cease to work if they refer to a resource that is moved. Second, these programs 
will incorrectly refer to the wrong resource if the original name of the moved 
resource is reused. These problems are not simply inconveniences. They are 
costly because they make software resources unreliable and the malfunctioning 
software may not be detected. 

Location-independent names are a necessity for reliable software in a 
resource-sharing network. Here’s how the DNA scenario would work. The Stan- 
ford scientist would register the program and database with the network 
nameserver; suppose the strings “DNA-Reader” and “DNA-Traces” are 
approved and are unique in the network. The scientist assigns corresponding 
local names unique only within the Stanford computer; suppose these are, respec- 
tively, “DNAR001” and “DNAT001”. The scientist informs the nameserver of 
these local names and the nameserver installs the entries 

. This scenario illustrates two problems caused by location-dependent 

DNA-Reader = DNAROOl@Stanford 
DNA-Traces = DNATOOl@Stanford 
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Later, when the database is moved, its nameserver entry can be corrected to 
read 

DNA-Reader = DNAROOl QDNA-Institute 
DNA-Traces = DNAT001QDNA-Institute 

All programs and databases that refer to the DNA-Reader and the DXA-Traces 
database do so by their network names, which never change. Every network 
command that receives a location-independent resource name as a parameter 
works like this: it interrogates the nameserver to obtain the current network 
address corresponding to the name, which it then passes to the protocol software 
for access to the resource. The interaction with the nameserver to translate the 
name is done automatically and is not visible to the user. 

so simpiy by a command like OBTAIN-COPY(DNA-Reader), which would work 
before and after the program is moved to the DNA Institute. Moreover, none of 
the copies of the program would need revision because they refer to the database 
only by its unique name which does not change when the database moves. 

Location-independent naming may at fvst appear slower than location- 
dependent addressing because of the interaction with the nameserver. Almost all 
this interaction can be eliminated by maintaining in each host a small database, 
called a cache, containing copies of the most recently used entries in the 
nameserver’. (Safeguards are needed to ensure that cache entries become invalid 
if a resource moves.) 

Location-independent addressing also allows users to interact without hav- 
ing to know exactly where they are. In the current ARPANET, for example, 
someone wishing to send me mail must issue a command like 
MAIL(pjd@RMCS), where “pjd” is my local login identifier and “RIACS” the 
acronym for my institute. If I change hosts, those wishing to send mail to me 
encounter the same problem as the DNA-Reader when the DNA-Traces database 
moved: the MAIL command malfunctions. If I am registered with the 
nameserver under the unique name, say, PJD1, the command MAIL(PJD1) will 
work correctly no matter where my mailbox is, as long as I keep the nameserver 
informed of my current location. 

Network names may be artificial or clumsy - for example, I may not be 
allowed to register under my initials (PJD) because some other user has already 
used those initials. Users prefer short, descriptive names having more meaning, 
and so many systems allow each user to define an “alias table” that records 
nicknames for resources and users. Now the addressing protocol becomes, fmt, 
translate alias to network name; then, translate network name to network 
address. For example, one user can say “set alias peter = PJD1” after finding 
my unique name from the nameserver; thereafter commands MAIL(peter) by 
him will work correctly. Meanwhile, another user can say ‘.‘set alias riacs- 

Now anyone wishing to obtain a copy of the DNA-Reader program can do 
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director = PJD1” and for him MAIL(riacs-director) will work correctly. The 
alias table is not the same as the addressing cache mentioned earlier: the alias 
table is established and maintained individually by each user and does not 
interact with the nameserver. 

CONNECTION SIMPLICITY. The same method should be used 
throughout the network for opening reliable connections between processes; 
moreover, the method of sending data over an open connection should be 
independent of the physical path, bandwidth or communications technology 
used. Factors concerning physical details such as network types, protocols, 
bandwidths, transmission modes, media, routings, gateways, addressing schemes, 
and operating systems need not be visible to anyone except the few experts who 
wish to see them. . 

The most effective way of hiding these details is to regard a connection 
merely as a transmission path for a few selected types of data between two nodes 
of the network. The two ends of a connection are called sockets. Devices, files, 
and executing programs can be connected interchangeably to sockets. The type 
of data passed over a connection cannot be completely hidden because it affects 
transmission priorities and error controls on packets. The major types are bulk 
bit streams, video frame updates, and voice. 

The network protocol software is responsible to set up the path over one or 
more networks that physically connect the two hosts between which connection 
is desired. The user will not be required to be aware of the details. 

surprising amount of detail, but not all. It can certainly hide the working details 
of commands to open, close, send, or receive - but it cannot hide measurable 
properties such as bandwidth or response time. 

Scrupulous application of the connection-simplicity principle can hide a 

STANDARD EXTENDABLE INTERFACES. The network should 
provide higher-level functions as standard extensions to the commands. The 
essential commands are: 
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Open a connection with another node. 
Listen for an incoming call. 
Close a connection. 
Attach a file, device, or program to a socket. 
Detach a file, device, or program from a socket. 
Send data into an open connection. 
Receive data from an open connection. 
Find out the status of a connection. 

An interface this siniple can provide most of the function we expect of a 
network. The generality of this interface can be illustrated with a session of 
remote interactive use of the DNA-Reader program. The user has a file called 
DNA-options that is input to the DNA-Reader and controls the type of reading 
performed. The user wishes to watch the evolving interpretations on a local 
graphics display. In the absence of a standard interface for remote program ex- 
cution, the user would have to perform these steps: 

1. 

2. 

3. 

4. 

5 .  

6. 

Open two connections, for both directions of communication with the 
remote computer containing the DNA-Reader. This pair of connections will 
serve as the control channel with the remote computer. By default, the 
remote operating system will attach the input and output ports of a login 
program to them. 
Attach the local keyboard and display to this connection pair. 
Type the commands needed to log in to the operating system on the remote 
computer. 
Open two more connections with the remote computer, to be used as the 
input-output channel with the remote DNA-Reader process. Type the com- 
mands needed to instruct the remote operating system to spawn a process 
containing the DNA-Reader program and connect its input and output to 
this connection pair. Locally, attach the DNA-options file to the outgoing 
connection and the interactive graphics display to the incoming connection. 
Using the control channel, issue further commands as necessary to control 
the remote process. 
When the remote process has completed, close down all the above connec- 
tions. 

.The above scenario contains at least twelve calls on commands in the con- 
nection interface. It also contains standard command sequences for login and 
job activation. The overall sequence of steps is likely to be so common that a 
command script can be written embodying them. The user then need execute 
only the command script with a few parameters to describe the remote program 
and the local sources of input and output. The command script might have the 
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form 

REMOTE-EXECUTE(host, program, input, output). 

The scenario above could be called into action with the single call 

REMOTE-EXECUTE( Stanford, DNA-Reader, DNA-options, Display). 

Note how a command script ‘can hide the network command interface behind a 
simpler, higher-level interface. It is in the best interest of the network to specify 
standards for high-level interfaces of common functions such as remote execu- 
tion. 
. 
can be executed implicitly by the local command interpreter, which would hide 
even more of the network interface. For example, a simple extension to the 
UNIXTM command interpreter would allow a user to type ‘DNA-Reader < 
DNA-options > Display”. This command would initiate execution of the pro- 
gram named “DNA-Reader” with its input from the file named “DNA-options” 
and its output directed to the device named bbDisplay”. Because the string 
“DNA-Reader” is a network name, the attempt to invoke it will automatically 
cause the local command interpreter to establish the connections noted above. 

With a sufficiently powerful local operating system, most of the above steps 

A supernetwork of the magnitude of NSF-net will remain with us for a long 
time. It is essential to have a clear vision of what the supernetwork will do in 
the long term, for otherwise it is easy to make early design decisions that will 
block important developments later. Obviously a supernetwork with the capabil- 
ities described here would be extremely powerful and would have a significant 
positive effect on scientific productivity. Such a system is within our technologi- 
cal grasp and NSF is reaching for it. 
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American Scientist 73 
NO. 4 (Jul-Aug 1985) 

Computer ryatemr that aimultancoualy apply the power of many procearors to the solution 
of a ringle problem are coming of age. Why ha8 it taken nearly 40 parr for thia to h a p  
pen? 

In February, 1985, the Intel Corporation announced the iPSCT“. a com- 
putet of a new structure, called a hypercube architecture, with the potential to 
surpass the fastest supercomputers at a fraction of the cost. The machine is 
based on a project called the Cosmic Cube headed by Chuck Seitz at Cal Tech 
(Seitz 1985). It consists of 2” processor boards connected by a special high- 
speed network. (Intel currently offers machines for n =5, 6, or ?.) The network 
connects processors as if they were on the comers of a cube in n -space (hence 
the name, “hy-percube”), which means that each processor is directly connected 
to n others and that the longest path between any two processors spans n links. 
-4 128-processor machine is expected to sustain a processing rate of 10 ,MFLOPS 
(million floating-point operations per second) for the fastest algorithms, which is 
roughly one-frfteenth the sustained rate of the fastest real p r o g r k  on the Cray 
X-MP-2Xm at one-twentieth the cost. (The maximal instantaneous speed of the 
Cray X-MP, in excess of 600 MFLOPS, is not sustained by real programs.) 

The hypercube architecture has caught the fancy of many users of large- 
scale computing. Other manufacturers will soon offer competing products. Yet 
the concept of a computer containing many processors that simultaneously work 
on different parts of the same problem is as old as the era of electronic comput- 
ing. 

puter capable of solving arbitrary differential equations; his computer consisted 
of many components operating in parallel. The papers of von Neumann in the 
1940s considered methods for solving differential equations on a discrete grid - 
all grid points were updated in parallel using the differential equation to deter- 
mine how neighbors affect a particular grid point. Many models of possible com- 
puting substrates for intelligence were based on regular networks of automata. 
A substantial number of researchers during the 1960s considered a class of 

In the 19209, Vanevar Bush of MIT demonstrated a general analog com- 
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models called parallel program schemata; they sought to characterize the 
behavior of parallel systems and understand how to eliminate certain undesirable 
behaviors, such as indeterminate computations resulting from unpredictable 
speeds of components. The ILLIAC IV computer, constructed at the University 
of Illinois in the late 1960s, consisted of 64 processors operating in lock step; 
although its limited memory and expensive hardware prevented its proliferation, 
it inspired much interesting work in parallel algorithms. The emergence of very 
large scale integration (VLSI) technology in the 1970s stimulated interest in cir- 
cuits composed of many parallel computers and in algorithms for using them. 

There has thus been a continuing research effort to understand parallel 
computation. In spite of this, most parallel machines have been laboratory 
curiosities and most parallel algorithms paper studies. What has held this tech- 
nology back from general commercialization for so long? Why is an idea that 
has lain relatively dormant for forty years now getting so much attention? 

program computer, the cost of processor technology, and a plausible argument 
that “bigger is better.” 

A sequential computer consists of a processor, a memory, and a communica- 
tion subsystem. The processor fetches a sequence of instructions from memory. 
It decodes each instruction and carries out a specified operation on data in stan- 
dard registers or in memory locations whose addresses are contained in the 
instruction. This approach to machine organization appeals to the strong intui- 
tive idea of a step-by-step algorithm. It underlies the most common program- 
ming languages and much of the theory of computing. Its simplicity and univer- 
sality make it a computer model of extremely wide appeal. 

Not until the late 1970s was microelectronic technology mature enough that 
computer architects could seriously consider machines comprising many proces- 
sors. Prototypes like the ILLIAC IV were based on technology that was unat- 
tractive for widespread use. Only recently has it become commercially feasible to 
build machines capable of comprising hundreds of processors. 

Bigger-is-better arguments take a variety of forms. One is Grosch’s Law, an 
empirical formulation dating back to the 1940s that says the cost of a computer 
in given technology is proportional to the square root of its speed. By extrapola- 
tion, a computer four times faster than this one would cost only twice as much. 
So why not seek the fastest possible computer? 

Another form of the argument was pointed out to me by Len Kleinrock of 
UCLA. Suppose we have a supply of jobs requiring an average of X computing 
operations each, and a processor capable of rate R operations per second. The 
expected time to complete a job once started is X /R seconds. Next, suppose we 
replace the single processor with n identical, slower processors each with rate 
R /n . Let each job be partitioned into a chain of n equal stages, the first stage 
being completed by the first processor, the second by the second processor, and 

The answer lies in the strong conceptual simplicity of the sequential stored- 
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so on. A total of n jobs can be in various stages of execution in such a pipeline 
of processors. It is not hard to show that an n -stage pipeline has the same 
throughput as the single processor but n times longer response time. While 
pipelining achieves parallelism, it is less responsive than a single processor of 
equal capacity. 

A pipeline represents a “series decomposition” of processing power. We can 
also consider a .“parallel decomposition” in which n identical, processors of rate 
R / n  operate on whole jobs. In this case the parallelism maintains the 
throughput at the same value as for the single processor, but each job’s response 
time is n times larger. Again there is no apparent motivation for the slower 
processors. 

There are two problems with the bigger-is-better arguments. The more fun- 
damental is that there is a limit to the amount of computing power compressible 
into one box. The explanation, sometimes called the speed-of-Iight argument, 
goes l i e  this. The speed of light is 3x108 m/sec in a vacuum and the signal 
transmission speed in silicon is at best 3 x lo7 m/sec after gate switching delays 
are taken into account. A chip slightly over one inch in diameter, about 3 cm, 
can propagate a signal in about lo-’ second. Because a nontparallel chip can 
perform at  most one floating-point operation during one signai-propagation, 
such a chip can support about 1 GFLOPS (giga floating-point operations per 
second) .t For this reason microelectronics experts do not expect single processor 
machines in current technology to significantly exceed 1 GFLOPS in speed. 
Current supercomputers are within a factor of 10 of this limit. 

ship between a problem’s size and the computing power required to solve it. For 
example, matrix miltiplication takes about n operations for n x n matrices. A 
problem twice as large thus requires a processor 8 times faster to complete in the 
same time. Equivalently, a processor twice as fast can multiply two matrices of 
size n xZ1I3 in the same time, i.e., handle a problem only about 25% larger. 

superlinear increases in the computing power required to solve them in the same 
amount of time. Sooner or later, we will require power beyond the capability of 
a single processor machine. 

are critically dependent on the assumption about job partitioning. In the cases 
mentioned above, jobs are partitioned into sequences of components (pipelining) 
or are left intact (straight parallel execution). Consider, however, a more radical 
approach: Each job is broken into n equal and independent components. 
Assume that the time to partition the input data among the n components and 
aggregate the output results from the n components is negligible compared to 
the time to complete a component. Now each component takes time 

This limit is becoming a serious problem because of the nonlinear relation- 

In other words, linear growth in our appetites to solve problems results in 

The second reason the bigger-is-better arguments break down is that they 

~~~ 

tThe printed article crroncourly reads “10’ GFLOPS.” It should read ‘LIO’ FLOPS.” 
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(X / n ) / ( R  / n ) =X / R  to complete on one of the slow processors. Because all 
components can be completed in the same interval, this system has the same 
response time and throughput as the single processor it replaces. There is a gain 
if each slow processor costs no more than l / n  of the cost of the single processor. 
(If Grosch's law applied, the total cost of the n slow processors would be 6. 
larger than the cost of the single fast processor. But Grosch's law does not 
apply because different technologies are used: the fast processors tend to be 
handmade whereas cheap, slow processors tend to be mass-produced.) The con- 
clusion is that the parallel decomposition can lead to a machine of the same 
throughput and response time at a fraction of the cost of a single processor - 
provided that the workload can be partitioned into independent: approximately 
equal pieces. 

.This proviso reveals that just beyond the speed barrier lies another: the 
software barrier. We're good at understanding sequential algorithms, but we 
have little experience with algorithms that direct and coordinate parellel proces- 
sors. We don't know how to program the new machines. Most of the common 
programming languages are sequential - programs execute one statement at a 
time. The old computer languages, such as Fortran, Cobol, and Algol, and new 
languages, such as Pascal, share this property. 

separately running sequential programs, called processes, that exchange informa- 
tion among themselves via specific links. This gives rise to a model of parallel 
computation called communicating sequential processes (CSP) dating back to 
1965. The programming language must be extended to include statements cal- 
ling for the explicit creation of processes and for communication among them. 
The language Ada has such statements, as do Concurrent Pascal and a Pascal 
derivative called Occam. 

The CSP model is more difficult to program than its close conceptual 
cousin, the sequential machine model. The reason is that the programmer must 
specify not one but many sequential processes and also the communications 
among them. The hypercube programmer, for example, is faced with the task of 
writing 2" programs, one for each processor, and with understanding on the 
order of (2" ) 2  potential communication paths. 

tions is a formidable task for the unaided mind, not only because of the large 
number of possibilities but because of new types of errors that arise from interac- 
tions among processes.. One type of potential problem is the nondeterminacy 
arising when two processes contain instructions to  write a value in a shared vari- 
able: the value in the shared location will depend on which of the two processes 
wrote last. Another type of problem is the deadlock, where two or more 
processes get stuck in a cycle, each awaiting the receipt of information from 
another. The techniques for avoiding these problems are well known. Nondeter- 
minacy can be avoided by forcing processes that share memory to proceed in 

An easy way to think about parallel computation is a collection of 

Understanding such a maze of possible interleaved executions and interac- 
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some fixed order. Deadlock can be avoided by forcing processes to request infor- 
mation from one another in some fxed, global order. These techniques and the 
errors they prevent are unfamiliar to most programmers. 

A major research goal in the years ahead is the development of new pro- 
gramming tools that aid the construction of systems of concurrent processes. 
These tools should operate at a higher level of abstraction than today’s software 
tools. With them, the effort to specify a correct concurrent computation should 
be no greater than the effort today to specify a single sequential process. 

An example of such a system is the Programming Environment known as 
“Poker” being developed in Larry Snyder’s CHiP project at the University of 
Washington (Snyder 1984). Poker presents a graphics screen containing a block 
diagram of an array of processors. The programmer specifies desired intercon- 
nections by drawing links between some of the processors. The programmer 
specifies programs by entering them in a language (e.g., Pascal) and Finting to 
the boxes of the processors that areeto nin them. Poker handles the details of 
loading the programs into the processors, inserting the correct communication 
statements into the compiled programs, and automatically establishing all the 
required links. Poker can also be extended to automatically enforce rules 
preventing nondetenninacy or deadlock. The effort to construct a system of 
parallel programs using Poker is about the same as that required to construct 
one Pascal program using conventional programming aids. 

We are near the limits of single-processor technology. The only available 
approach to computing power much beyond 1 GFLOPS is machines consisting of 
many parallel processors coupled with new programming methods that allow 
partitioning jobs into many 
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The roftware bam'err to parallel computation are formidable. Progress toward computer 
ryrtenu that ezploit parallelirm ir l iLe l~  to be rlow. I t  will be governed b y  the rate at 
which we can find toolr to aid the mort abrtraet arpeetr ofproblemsolving. 

The software barrier - the set of limitations in software technology that 
impedes our effective use of parallel hardware technology - is not a brick wall 
that can be broken down with a heavy ram. It is a deep, thick jungle through 
which slow progress will be achieved by constant chopping and hacking. I would 
like to describe the four stages of our probable journey through this torturous 
territory. Stage 1 is nearly fmished and Stage 2 is under way. Tentative 
explorations are beginning on Stage 3. Stages 4 is more distant. 

IN STAGE ONE, para!lel&m is introduced into the hardware of a single com- 
puter, which consists of one or more processors, a main storage system, a secon- 
dary storage system, and various peripheral devices. Old examples of this 
include multiple function units in the processor, multiple-bank memo-ry, pipeline 
execution of instructions, and vector pipelines that apply one operation to a 
stream of data. These old ideas are undergoing a new round of improvements in 
a class of machines called reduced instruction set computers (RISCs). RISCs are 
fast partly because their instruction sets are small and partly because their com- 
pilers carefully analyze programs to create code patterns that keep the instruc- 
tion pipeline busy most of the time. 

tem. Most operating systems contain a ready queue that lists the names of all 
processes (programs in execution) awaiting their turns to run on a processor. 
With a few changes, an operating system can be extended so that multiple pro- 
cessors serve the ready queue rather than just one. This principle is exploited by 
a genfe of machines called symmetric multiprocessors. As early as the late 
196Os, a few manufacturers offered such machines with'up to four processors. 
Today there are commercial multiprocessors with as many as two dozen proces- 
sors; the capacities of these machines can be increased simply by plugging in 

The computer hardware is controlled by a program called the operating sys- 
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more processor boards. A more radical multiprocessor is the NYU Ultracom- 
puter, an experimental project undertaken jointly by New York University and 
IBM; new processors and memory can be added indefinitely without saturating 
the processor-memory interface. 

Stage 1 is relatively easy on users because it requires almost no change to 
the visible software technology. For example, the Cray-1’s vector hardware can 
be exploited by reorganizing algorithms with minimal changes in the Fortran 
language once the Fortran compiler has been updated to handle vectors of data. 
Similarly, key subroutines, such as Fast Fourier Transform, can be recoded for 
array or vector machines without changing the calling protocols. A multiproces- 
sor can be exploited without changes in the UNIXTM operating system’s com- 
mand language once the UNIX kernel has been updated to allow multiple proces- 
sors to execute in it simultaneously. Thus, the software changes needed for 
Stage 1 parallelism can be confined to the compilers, the libraries, and the 
operating system and are largely invisible to users of high level languages. 

Stage 1 is now well under way and will be mature within a few years. Most 
program codes include so many assumptions about sequential execution that 
they, rather than the hardware, limit our ability to use up the power of parallel 
machines. Our hunger for more computing power will force us to Stage 2. 

IN STAGE TWO, parallel execution of cooperating programs on different 
machines becomes explicit. Programs exchange data over high speed communi- 
cation links rather than by passing addresses of shared data segments. The 
hypercube architecture, such as in the Intel iPSCTM, is of this type. 

there is no common store, processes operating on different machines cannot 
exchange data by accessing shared variables. Instead they must invoke network 
commands. An especially simple notation for this was proposed by C. A. R. 
Hoare of the University of Oxford [Hoare, 19781. A new type of variable, called 
a port, is added to the programming language. At a place where a value is 
needed from another process, the program contains the port name followed by a 
question mark. Where a value is to be sent, the program contains the port name 
preceded by an exclamation point. The sender and receiver must rendezvous at 
a port before the data -is actually transferred-between them. For example, a pro- 
cess that reads values X and Y from input ports and transmits the sum to an 
output port 2 would contain the statement 

. 

A few changes in programming language are needed at Stage 2. Because 

!Z = X ? + Y ?  

In evaluating this expression, the process waits until both ports X and Y con- 
tain values, then sums them, then sends the result on port 2. These notations 
are contained in a derivative of Pascal called Occam. 
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More extensive changes are taking place in operating systems. Instead of 
managing one computer, operating systems are being extended to manage net- 
works of computers. The interface will be kept simple so that the same opera- 
tions will deal with resources whether they are local or remote. These “distri- 
buted operating systems” will eventually allow the construction of computations 
that s p a  many machines, of different types (e.g., workstations and supercom- 
puters). 

To help programmers keep track of a potentially large number of interact- 
ing programs and machines, and to  properly load programs into their machines 
at run time, we will need new software development tools. An example is the 
Poker programming system described in my previous column. 

under way. Progress in Stage 2 will be limited more by algorithm technology 
than by programming technology. How can kernel codes for fluid dynamics, 
chemical properties, frnite structural analysis, seismic modeling, or petroleum 
exploration be decomposed into parts that can be run on separate machines? 
Can the numerical properties and stability of algorithms that solve linear equa- 
tions or partial different equations be preserved under such partitions? How 
extensively will our basic mathematical and statistical software libraries need to 
be reworked for partitioned machines? Ahead may lie a substantial effort to 
exploit new knowledge about basic algorithms in real codes. 

detailed information about algorithms for partitioned machines will be 
discovered. But the complexity of what is learned will create a strong pressure 
to hide the details behind simple interfaces and to find compilers and operating 
systems that can perform algorithm-partitioning automaticaiiy. This will force 
us toward Stage 3. 

Although not yet used widely, these changes in software technology are well 

I expect a lot of algorithms research during Stage 2. A great deal of 

LV STAGE THREE, new languages will make parallelism implicit and their com- 
pilers will take over the burden of partitioning programs. Conventional pro- 
gramming languages are imperative in the sense that their statements are all 
treated as commands directing a processor. In contrast, the new languages are 
functional, which means their statements are treated as expressions denoting 
compositions of functions. Examples are: 
1. LISP, which specializes in the manipulation of strings of symbols that 

denote expressions and values; 
VAL and LUCID, which specialize in dataflow computations, where opera- 
tions fue as soon as all their operands are available; 
REDUCE and MACSYMA, which specialize in symbolic algebraic expres- 
sions - differentiation, integration, and reduction to minimal terms; 

2. 

3. 
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4. 

5 .  

6. 

SQL, which specializes in queries of relational databases; 

APL, which specializes in applying functions to vectors of data; and 
PROLOG, which specializes in evaluating expressions in a deductive logical 
system. 
This list of examples is not exhaustive. the common feature of these 
languages is that they describe the results of a computation but not the 
method of obtaining the results. this leaves considerable flexibility for com- 
pilers and operating systems to distribute pieces of a computation among 
many processing elements. 
to date there is very little experience with these languages outside of com- 

7. 

puter science. there is good reason to believe that they are incomplete with 
respect to solving real problems in other disciplines. many problems decompose 
naturally into pieces called chunks that can be solved separately and must there- 
fore be accounted for explicitly during the formulation of an algorithm. different 
chunks may require solution on different machines and in different languages. 
an example of this arises in computational fluid dynamics, where a test region 
may be divided into zones, each zone being treated with a different algorithm.. 
Not only is each zone a chunk in its own right, but each zone may be composed 
of dissimilar subchunks - for example a chunk to derive symbolic equations from 
the zone’s description, a chunk containing a symbolic manipulator to reduce the 
equations to minimal terms and generate a corresponding Fortran program, and 
a chunk to execute the Fortran code. The inability of Stage 3 languages to deal 
with heterogeneous chunks, or to define chunk boundaries, will motivate progress 
toward Stage 4. 

IN STAGE FOUR, there will be very high level user interfaces capable of 
interacting with scientists at the same level of abstraction as scientists do with 
each other. These interfaces will help formulate precise descriptions of problems 
in a given domain, using natural language, pictures, speech, and formal notation. 
The interface systems will convert these descriptions into natural chunks, con- 
struct functional descriptions of the chunks, convert each functional description . 
to a specific program, convert each program to executable code, request code 
execution, and finally collect the results for display at the abstraction level of the 
domain. Stage 4 systems will use today’s expert-system technology as a building 
tool. This technology facilitates storage and use of rules stating the desired 
response when given stimuli are presented. 

. 

There is A striking resemblance between the probable stages of evolution of 
computing technology for science and the hierarchy of abstractions in the process 
of formulating computational solutions to scientific problems. From the most 
abstract to the most specific levels, the hierarchy is: 
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PRECISE DESCRIPTION. Construct a precise description of the 
model for the problem and the constraints to be observed during solu- 
tion. This description may use natural language, mathematical nota- 
tion, and special terminology and notations of the discipline. 
ABSTRACT ALGORITHMS. Specify the general strategy to be used 
to solve the problem according to the given description. How will the 
solution partition into chunks? What strategies of iteratiofi, data 
exchange, and convergence will be used? (At this level we do not worry 
about details like data representation or machine capacity.) 
CONCRETE ALGORITHMS. Construct or hook together program 
modules for the various pieces of the solution. Each module may be 
represented in a different language. 
MACHINE CODES. Construct codes in the instruction sets of 
machines and distributed operating systems to carry out the detailed 
computations. 

The problem-solving process is a series of transformations from the precise 
description at the abstraction level of the discipline down to the precise descrip- 
tion of an algorithm at the level of abstraction of the hardware. 

for-one with the four principal abstraction levels in the problem-solving process. 
Each stage of evolution is a step in the development of tools for programming at 
a particular level of this hierarchy. Computer science currently offers few tools 
to support transformations at the higher levels of the hierarchy: this is why few 
Stage 3 or Stage 4 systems exist. Although parallel computation is less visible at 
the higher’higher levels, it. -is no less important: it gives the means to implement 
the performance needed to operate systems at Stages 3 and 4. 

The four stages of evolution toward parallel computation correspond one- 
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Deep in a computcr’r hardmare are eircuitr called arbiter6 whore function ir to select 
ezoedy one out of a re t  of binary rignalr. If one of the rignalr can change from “0” to 
“1 ” while the releetion ir being made, the rubrequent behavior of the computer m a y  be 
unpredictable. I t  appearr fundamentally imporrible to conrtruct an arbiter that can  tel i -  
ably make i& releetion within a bounded time interval. 

The 14th century philosopher Jean Buridan described the paradox of the 
hungry dog who, beiig placed midway between two equal portions of food, 
starved (Rescher 1967). Everyone has experienced the sensation of frozen immo- 
bility when faced with a choice between two equally appealing alternatives. Who 
would think that this problem is so fundamental that it limits the ability of com- 
puter circuits and software to reliably resolve contention for shared resources? 

Computers contain circuits called arbiters for selecting one of many poten- 
tial requests for serially reusable resources, which can,be used by only one pro- 
cessor at a time. Common hardware devices such as memory banks, arithmetic 
function units, and communication channels are resources of this type. Some 
software, such as files of data and subroutines with private internal variables, is 
also of this type. What happens if an arbiter must select among near- 
simultaneous signals? 

time limit assumed by other circuits, the results can be devastating. One form of 
arbitration failure is that no processor gains access and the computer stops; 
another is that several processors gain access at once, producing an inconsistent 
state of the shared resource and leading eventually to complete system failure (a 
“crash”). An apparently small probability of arbiter failure can still be signifi- 
cant because, at computer speeds, large numbers of arbitration events can occur 
in a short time. 

for very large scale integrated circuits (Seitz 1980). The following discussion 
barely scratches the surface of this nugget. An N -way arbiter has N inputs 
(one per processor). It must have exactly N +1 externally observable, stable 

If, like the ill-fated dog, the arbiter fails to decide on a selection within the 

Chuck Seitz of Caltech gives an excellent description of arbitration failure 
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output states. State i (for i = 1, ..., N )  signifies that processor i has been 
selected and is using the shared resource; state 0 signifies that no processor is 
selected and the resource is free. If processor i signals when the arbiter is in 
state 0, the arbiter will move to state i , possibly through a chain of transient 
internal states. If processor i signals when the arbiter is not in state 0, the sig- 
nal is saved and the processor waits. When the resource is released by processor 
i , the arbiter returns to state 0 if no signals &e waiting and moves to another 
state j otherwise. Thus it is easy to follow the operation of the arbiter when 
processors supply inputs at distinguishably different times. 

ously - i.e., within the selection interval. (The selection interval, A, is on the 
order of lo-’’ to lo-’’ seconds in today’s technology.) In this case, the arbiter is 
simultaneously asked to follow the trajectories 0 .--) i and 0 -+ j for distinct i 
and j . It can now wind up in an internal state poised exquisitely and equally 
between the two targets, i and j , where it will remain until dislodged by noise 

* or another input. This unstable equilibrium is called a metastable state. As long 
as the arbiter is in a metastable state, its output lines, which contain codes 
derived from the internal conditions associated with stable states, are meaning- 
less. The output voltages might assume intermediate values that cannot be reli- 
ably interpreted as binary “0” or “1”; they might appear to indicate two or 
more selections; they might oscillate. 

during normal transitions between stable states. A metastable state is a point of 
equilibrium that can persist indefinitely; which stable state is entered next is 
unpredictable. A transient state, on the other hand, is not a point of equili- 
brium; it has a short, bounded holding time. 

The time it takes to reenter a stable state depends on how close to a meta- 
stable state the arbiter was driven by its inputs and on the arbiter’s switching 
speed. (Noise affects the position of the metastable equilibrium point but not 
the probability of a particular duration.) The situation is analogous to that of a 
ball set motionless atop a rock. The time until the ball falls from the rock and 

.comes to rest on the ground depends on how finely balanced it was on the rock’s 
pinnacle and on the curvature of the rock. Just as it is impossible to predict 
exactly how long the ball will stay in place on the rock, it is impossible to predict 
exactly how long the metastable state of the arbiter will persist. 

Analyses of the differentcal equations of arbiter circuits show a common 
pattern. The probability that the metastable state lasts at least t seconds is 

on the order of lo-’ second, the circuit’s switching time. If f arbitrationsper 
second are needed and the minimum distinguishable separation between signals 
is A seconds, the probability a given arbitration event pushes the arbiter into a 
metastable state that persists n = t /a circuit switching times is f A e  -n . 
Seitz gives an example of a disk generating lo6 interrupts per second in a circuit 

The trouble begins if two processors signal their requests almost simultane- 

Metastable states are not the same as transient states that may be visited 

for a parameter a that depends on the circuit technology. Typically l / a  is e -at 
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with A = IO-" second and n =16: arbitration failure will occur about once in 
every 10I2 interrupts, which comes out to about once every 10 days. 

In the 1970s, Thomas Chaney and Charles Molnar of Washington Univer- 
sity in St. Louis conducted studies of arbiter circuits under repeated applications 
of near-simultaneous inputs. Their group produced photographs of oscilloscope 
traces showing circuits stuck in their metastable states for amazingly long 
periods, some up to about 30 times l / a .  No circuit is known that avoids meta- 
stable behavior when subjected to such tests. 

Is there any way to avoid arbitration failure? It is tempting to say: Yes, 
run everything off a common clock; stagger the times at which signals are sam- 
pled and the times at which signals are used. Then the using circuits see only 
unchanging signals emitted by the sampling circuits. The problem with this 
hypothesis is that it is impossible to control when some signals will arrive. For 
example, the interrupt signal announcing the end of a file transfer cannot be pre- 
cisely controlled because the disk rotation time cannot be precisely controlled. 
In general, whenever the timing of at least one of two confluent signals cannot 
be precisely controlled, arbitration failure can occur at their junction. 

What happens if the clock can be stopped? David Wheeler of the Computing 
Laboratory at the University of Cambridge (England) designed an arbiter for 
the Cambridge CAP computer. Wheeler's arbiter contains an additional thres- 
hold circuit that detects when a stable state has been entered and then produces 
a special output. By design, the companion circuits shut off the clock just after 
initiating an arbitration event; the arbitration circuit restarts the clock as soon 
as the special output signals that the arbiter has settled. Now arbitration failure 
is impossible. But there is a price: the special output cannot be guaranteed to 
appear within any preset, bounded interval. (In fact, the probability the special 
output is still off after n circuit-switching times is on the order of e -n .) On 
average, Wheeler's circuit takes time l / a  to reach its decision - a small loss in 
average speed: Nonetheless a few decisions may take a long time that may 
exceed the tolerances of some systems. 

Seitz also describes a class of circuits that use no clock at all, called self- 
timed circuits. Self-timed circuit elements interact by exchanging request and 
acknowledge signals; no element can generate a next request until after it has 
received an acknlowledgement for its previous request. In this context, an ele- 
ment called an interlock, which resembles Wheeler's circuit, is used for arbitra- 
tion. An interlock cannot cause arbitration failures, because neighboring circuits 
are forced to wait until the interlock has reached a decision. Because they tend 
to consume more energy in interelement signalling than clocked circuits, self- 
timed circuits have been less attractive for high performance computers. How- 
ever, their greater reliability makes them increasingly attractive for massively 
parallel computers. 

. 

So there is no solution to arbitration based on a continuously running clock. 
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Arbiters and interlocks are also called mutual exclusion circuits. They are 
examples of circuits used to synchronize unclocked inputs with the internal clock. 
Synchronizers must contain arbiters to handle the case of inputs changing at the 
same time as the clock. For this reason, arbitration failure is also called syn- 
chronization failure. 

stood and solved by hardware designers but not by software designers. Nothing 
could be farther from the truth. Programmers of parallel computations are con- 
stantly faced with the challenge of finding ways to avoid arbitration failures 
when parallel tasks compete for shared data. 

In 1965 Edsgar Dijkstra of the Technische Hogeschool Eindhoven published 
a paper that foresaw the software problems caused by attempts to control paral- 
lel processors (Dijkstra, 1965). Entire books have since been devoted to the sub- 
ject and some modern programming languages include syntax for dealing with 
the problem. Dijkstra’s formulation of the problem was this: Consider a com- 
puter consisting of N processors having access to a single shared memory. Each 
processor runs its own program. Each program contains a critical section of 
code whose instructions examine and modify data that is accessible to all the 
processors. Two processors must not be allowed simultaneous access to the 
shared data lest they interfere with each other and produce inconsistent results. 
Is it possible to program common entry and exit protocols to critical sections in 
such a way that this “mutual exclusion” requirement is met no matter what the 
relative speeds of execution of the processors? The entry and exit protocols 
should be the same and contain no built-in knowledge of which processors might 
use them. 

It might seem that arbitration failure is a problem that needs to be under- 

A simple example will illustrate the interference problem Dijkstra ought a 
way to avoid. In commercial banks, automatic teller machine programs contains 
a subroutine to transfer funds between accounts; a transfer of X dollars from 
account A to account B might be expressed by the program statements 
“A = A -X ; B = B +X ”. Execution of these statements is supposed to 
change the state of the accounts from ( A  , B ) to ( A  -X , B +X ), leaving the 
sum A +B unaltered. Now: suppose I initiate a transfer of $1000 from A to B 
while (from a different teller machine) my wife initiates a transfer of $400 from 
B to A . No matter which order we perform our transactions, the resulting 
state of our accounts should be ( A  -600, B +600). But suppose our two proces- 
sors can execute the machine code for these statements simultaneously. The fol- 
lowing events can occur. Just after my processor writes A -1000 and before it 
writes B +1000, my wife’s processor can read the account values, seeing state 
( A  -1000, B ) .  When her processor later writes its results, it overwrites the 
value B +lo00 subsequently written by my processor , leaving the state of 
accounts as ( A  -600, B -400) - a loss of $1000. Although the critical sections 
appear as units in the programming language, they are implemented as machine 
code sequences. Without the guarantee of mutual exclusion at the programming 

- .  
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language level, these code sequences can be interleaved during execution, leading 
to results that were not anticipated by the programmer. 

advantage of the fact that memory hardware contains arbiters that would allow 
only one processor at a time to gain access to memory. From the programmer’s 
viewpoint, this means that reading or writing scalar variables is an indivisible 
operation. Dijkstra showed how to implement two programs, ENTER and 
EXIT, that used shared scalar variables as signals among the processors. He 
proved rigorously that these programs guaranteed mutual exclusion of any criti- 
cal section they enclosed. He proved, moreover, that this solution was not vacu- 
ous because within a bounded time after one processor released its critical sec- 
tion, another would complete the ENTER procedure. 

gravity of the arbitration problem these programs solved was not hard to under- 
stand. So computer architects devised a more direct solution. The hardware 
solution is to create a special instruction that indivisibly sets a lock. This one 
instruction accomplishes the same work as did a loop examining the signal vari- 
. ables in Dijkstra’s ENTER procedure. 

The instruction “LOCK X ” treats memory address X as a binary variable. 
If it finds X =O it sets X =1 in the same memory cycle and proceeds. If it finds 
X =1 it retries the instruction in a later memory cycle. Dijktra’s ENTER opera- 
tion can be programmed simply as “LOCK X ” for a signal variable associated 
with the critical operations. His EXIT instruction is an ordinary “CLEAR X ’,. 

Unfortunately, this solution has a serious limitation that prevents its exten- 
sion to large numbers of processors. If many processors seek access to their criti- 
cal sections at the same time, all but one get stuck in a loop retrying the LOCK 
instruction until one of them reads the X =O left by the processor exiting the 
critical section. (The arbiter circuit guarantees that only one gains access to the 
memory after X becomes 0.) The problem is that each cycle of this loop requires 
an access to memory (to observe that X is still 1). During this cycle any proces- 
sor seeking access to other variables stored in the same memory is blocked. This 
means that the lock-testing loop will interfere with the progress of any processor 
doing legitimate work. As the number of processors in ihe system increases the 
overhead of lock testing increases, to the point finally of preventing any new pro- 
cessor from doing any useful work. 

multiprocessor computer systems. The fmt, proposed by Dijkstra in 1965, is to 
replace the lock with a queue called a semaphore. Any processor attempting the 
ENTER protocol when the semaphore is in use is suspended and its name placed 
in the queue. The EXIT protocol releases one of the enqueued processors, if any 
(Denning et al. 1981). In the second solution, each processor has a local memory 
called a cache that contains copies of values in the main memory. Thus the pro- 
cessor executing a LOCK X instruction gets a copy of the lock variable X in its 

In solving the problem of making critical sections indivisible, Dijkstra took 

Dijkstra’s programs were complicated and difficult to understand. Yet the 

Two solutions to the problem of excessive lock testing are used in modem 

- 
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cache and can loop there without interfering with any other processor. The 
CLEAR instruction broadcasts the message “ X  =O”, which is captured by one 
and only one of the caches if one is busy waiting for the lock or by the memory if 
no cache is waiting. Both these solutions reduce lock contention and allow a 
moderate number of processors to share memory. 

sections. This allows two processors to run concurrently in their critical sections 
if they are using different resources. In the banking example, we would use 
separate locks for the accounts A and B rather than one lock on the transfer 
subroutine. 

hardware arbiter that decides which processor gets the memory during the next 
memory cycle. The reliability of software arbitration is therefore limited by the 
reliability of the arbiter. - 

It is actually more efficient t o  lock individual resources rather than critical 

The software solutions to the arbitration problem rest ultimately on the 
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